Messier 1 – Crab Nebula

This deep sky object is called the Crab Nebula. It is a supernova remnant that was the first Messier Object – M1. It is located in the Constellation Taurus and is a Milky Way Galaxy resident that is about 6500 light years away. Messier was tired of finding objects like this when he was searching for Comets, so he devised a list of deplorables like this in order to avoid them in the future. I managed to tease out some interesting detail in M1 by using three extremely narrow band filters (Oxygen, Hydrogen and Nitrogen) and assigning them to colors that would enhance the detail in the image. One advantage of narrow band filters is that they filter out moon glow which was almost at it’s peak during these imaging sessions. The 25 stacked exposures totaled about 12.5 hours through a six inch refractor at f8 with a 1200mm focal length. More details are available at my Astrobin site. http://astrob.in/287183/0/

M1-WATERMARK

The Spaghetti Nebula – Simeis 147

image

image

From Wikipedia:

Simeis 147, also known as the Spaghetti Nebula, SNR G180.0-01.7 or Sharpless 2-240, is a supernova remnant (SNR) in the Milky Way, straddling the border between the constellations Auriga and Taurus. Discovered in 1952 at the Crimean Astrophysical Observatory using a 25-inch Schmidt-Cassegrain telescope, it is difficult to observe due to its extremely low brightness.

The nebulous area is fairly large with an almost spherical shell and filamentary structure.  The remnant has an apparent diameter of approximately 3 degrees, an estimated distance of approximately 3000 (±350) light-years, and an age of approximately 40,000 years.

It is believed that after its stellar explosion a rapidly spinning neutron star known as pulsar PSR J0538+2817 was left behind in the nebula core, emitting a strong radio signal.

Acquisition information can be found here…

http://www.astrobin.com/273407/?nc=user

 

Mosaic of the Cygnus Region of the Milky Way

image

This is a mosaic of 18 separate panels taken through an H-Alpha filter with the Rokinon 135mm f2.0 lens piggy backed on the Celestron C11 telescope.  Each panel was produced by stacking 20 images comprised of 5 and 10 minute exposures.  The total exposure time was 45 hours.  The picture includes the Veil Nebula, North American Nebula, Pelican Nebula, Tulip Nebula, Propeller Nebula and the Crescent Nebula in the Constellation Cygnus.  Microsoft ICE was used to assemble the mosaic.  Other software that was used included Adobe Photoshop, Pixinsight, and Maxim DL.

Rho Ophiuchi

Some things look best when they are photographed with a 135mm lens.

From Wikipedia:

“The Rho Ophiuchi cloud complex is a dark nebula of gas and dust that is located 1° south of the star ρ Ophiuchi of the constellation Ophiuchus. At an estimated distance of 131 ± 3 parsecs, this cloud is one of the closest star-forming regions to the Solar System.

This cloud covers an angular area of 4.5° × 6.5° on the celestial sphere. It consists of two major regions of dense gas and dust. The first contains a star-forming cloud (L1688) and two filaments (L1709 and L1755), while the second has a star-forming region (L1689) and a filament (L1712–L1729). These filaments extend up to 10–17.5 parsecs in length and can be as narrow as 0.24 parsecs in width. Some of the structures within the complex appear to be the result of a shock front passing through the clouds from the direction of the neighboring Sco OB2 association.

Temperatures of the clouds range from 13–22 K, and there is a total of about 3,000 times the mass of the Sun in material. Over half of the mass of the complex is concentrated around the L1688 cloud, and this is the most active star-forming region. There are embedded infrared sources within the complex.  A total of 425 infrared sources have been detected near the L1688 cloud. These are presumed to be young stellar objects, including 16 classified as protostars, 123 T Tauri stars with dense circumstellar disks, and 77 weaker T Tauri stars with thinner disks.  The last two categories of stars have estimated ages ranging from 100,000 to a million years.”

More info is available at Astrobin.

http://www.astrobin.com/257698/B/

image